The Role of Different Rheological Models in Accuracy of Pressure Loss Prediction

نویسنده

  • KATARINA SIMON
چکیده

Hydraulics play an important function in many oil field operations including drilling, completion, fracturing, acidizing, workover and production. The standard API methods for drilling fluid hydraulics assume either power law or Bingham plastic rheological model. These models and corresponding hydraulic calculations do provide a simple way for fair estimates of hydraulics for conventional vertical wells using simple drilling fluids, such as bentonite fluids. However, nowdays with many wells drilled deep, slim or horizontal using complex muds with unusual behaviour (such as tested MMH mud), it is necessary to use appropriate rheological model for mathematical modelling of fluid behaviour. Oil and gas reservoirs in Croatia have been under production for quite a while and the probability to discover new deposits of hydrocarbons is rather small. Therefore attempts have been made to maintain the gas and oil exploitation at the present level. One of possible ways to meet this target is re-entry wells drilling. The diameter of such wells in reservoir is smaller than 0,1524 m (6 in). Accurate modelling of annular pressure losses becomes therefore an important issue, particularly in cases where a small safety margin exists between optimal drilling parameters and wellbore stability, what is the case in reentry wells. The objective of the paper is to show the influence of well geometry and accuracy of fluid rheological properties modelling to the distribution of pressure losses in a slimhole well. Ključne riječi: izrada bušotina malog promjera, hidraulika, reološki model, drill-in fluid Sažetak Hidraulika ima vrlo važnu ulogu pri izvođenju velikog broja postupaka u bušotini uključujući bušenje, opremanje, frakturiranje, kiselinske obrade, održavanje i proizvodnju. Razmatranje hidraulike bušaćeg fluida prema API postupcima podrazumijeva primjenu ili eksponencijalnog ili Bingham plastičnog reološkog modela. Ti modeli i odgovarajući proračuni hidraulike osiguravaju jednostavan način dobivanja podataka prihvatljve točnosti za slučaj primjene u konvencionalnim vertikalnim bušotinama i kod primjene bušotinskih fluida jednostavnog sastava, kao što su bentonitne isplake. Međutim, danas, kada se izrađuje veliki broj dubokih bušotina, bušotina velikog dosega ili malog promjera, koje mogu biti usmjerene ili horizontalne, a za njihovu izradu koriste se fluidi složenog sastava i neobičnog ponašanja (kao što je slučaj s ispitanom MMH isplakom), neophodno je za modeliranje ponašanja fluida primijeniti odgovarajući reološki model. Budući se iz postojećih ležišta u Hrvatskoj nafta i plin proizvode već dulje vrijeme, a vjerojatnost otkrivanja novih ležišta je mala, nastoji se zadržati proizvodnju nafte i plina na današnjoj razini. Jedan od mogućih načina da se to ostvari je i izrada bočnih (“re-entry”) bušotina. Promjer takve bušotine unutar ležišta najčešće je manji od 0,1524 m (6 in). U takvim slučajevima vrlo je važno precizno modeliranje smanjenja tlaka u prstenastom prostoru. Posebno se to odnosi na slučajeve gdje postoji mali sigurnosni zazor između postizanja optimalnih bušaćih parametara i stabilnosti kanala bušotine, kao što je to slučaj kod izrade bočnih bušotina. U radu je prikazan utjecaj geometrije bušotine i preciznosti modeliranja reoloških svojstava fluida na smanjenje tlaka u kanalu bušotine malog promjera.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Prediction of methanol loss by hydrocarbon gas phase in hydrate inhibition unit by back propagation neural networks

Gas hydrate often occurs in natural gas pipelines and process equipment at high pressure and low temperature. Methanol as a hydrate inhibitor injects to the potential hydrate systems and then recovers from the gas phase and re-injects to the system. Since methanol loss imposes an extra cost on the gas processing plants, designing a process for its reduction is necessary. In this study, an accur...

متن کامل

Prediction of true critical temperature and pressure of binary hydrocarbon mixtures: A Comparison between the artificial neural networks and the support vector machine

Two main objectives have been considered in this paper: providing a good model to predict the critical temperature and pressure of binary hydrocarbon mixtures, and comparing the efficiency of the artificial neural network algorithms and the support vector regression as two commonly used soft computing methods. In order to have a fair comparison and to achieve the highest efficiency, a comprehen...

متن کامل

Bubble Pressure Prediction of Reservoir Fluids using Artificial Neural Network and Support Vector Machine

Bubble point pressure is an important parameter in equilibrium calculations of reservoir fluids and having other applications in reservoir engineering. In this work, an artificial neural network (ANN) and a least square support vector machine (LS-SVM) have been used to predict the bubble point pressure of reservoir fluids. Also, the accuracy of the models have been compared to two-equation stat...

متن کامل

Measurement and Prediction of Time-independent and Time-dependent Rheological Behavior of Waxy Crude Oil

Wax deposition phenomenon changes the rheological behavior of waxy crude oil completely. In the current work, the rheological time-dependent and time-independent behaviors of waxy crude oil samples are studied and flow curve and compliance function are measured for the oil samples with various wax contents at different temperatures. A decrease in temperature and an increase in wax content lead ...

متن کامل

اهمیت خویشاوندی ژنتیکی و رکورد فنوتیپی بر صحت ژنومی داده‌های جانهی شبیه‌ سازی شده با استفاده از مدل های حیوانی در حضور اثرات متقابل ژنوتیپ و محیط

The objective of this study was to investigate the role of genetic relationships between training and validation set with considering different ratio of phenotypic records of training set on accuracy of genomic prediction via animal models containing genotype × environment interactions in simulated imputation data. For this purpose, four different scenarios using 15k density containing differen...

متن کامل

Flow Variables Prediction Using Experimental, Computational Fluid Dynamic and Artificial Neural Network Models in a Sharp Bend

Bend existence induces changes in the flow pattern, velocity profiles and water surface. In the present study, based on experimental data, first three-dimensional computational fluid dynamic (CFD) model is simulated by using Fluent two-phase (water + air) as the free surface and the volume of fluid method, to predict the two significant variables (velocity and channel bed pressure) in 90º sharp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003